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Abstract
The temperature dependences of the magnetization, internal energy and specific
heat in a three-sublattice ferrimagnet or ferromagnet with |Jab| = |Jbc| �= Jca
are calculated within the framework of the linear spin-wave approximation,
by employing retarded Green’s functions. For both the ferromagnet and the
ferrimagnet, the internal energy and the specific heat decrease with increasing
J ′/J and/or the value of the spins. For fixed values of Sa , Sb, Sc and
J ′/J , the internal energy and the specific heat increase, whereas the sublattice
magnetization decreases with increasing temperature θ . The three-sublattice
ferrimagnet has some particular characteristics which are not shown by the
systems with two sublattices. For ferrimagnets, the antiferromagnetism of the
system becomes weaker with increasing J ′/J . The sublattice magnetization at
low temperatures (also the magnetization M0 at 0 K) of a ferrimagnet increases
with increasing J ′/J for fixed values ofSa , Sb andSc. The effects of the spinsSa
(Sc) and Sb on the magnetizations of other sublattices differ. The characteristics
of the a-sublattice are the same as those of the c-sublattice, due to their similarity
as well as the symmetry of the system. The behaviours of the b-sublattice are
different from those of the a- and c-sublattices, due to the asymmetry of the
three-sublattice system. The spin-value dependences of the spin deviation 	m

per spin (and also the energy for the zero-point quantum fluctuation) of the
system are different for different sublattices. These differences are ascribed to
the asymmetry of the three-sublattice systems, which leads to the new intrinsic
properties of the systems.

1. Introduction

Magnetic superlattices have attracted much interest since the discovery of the interlayer
exchange interaction between ferromagnetic layers separated by a nonmagnetic spacer [1, 2]
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and of the oscillations of the interlayer exchange coupling [3]. The magnetic properties of these
composite materials are distinctly different from those of their bulk counterparts. On the other
hand, one of the main directions which efforts to achieve an understanding of the mechanism
of high-temperature superconductivity have taken is that of investigating two-dimensional
magnetic systems and magnetic superlattices [4].

Spin waves are elemental excitons in magnetic materials, from which one can derive
the thermodynamic properties, such as magnetization and specific heat, and their dynamical
behaviours. A multi-sublattice model, consisting of different sites in a unit cell, was proposed
for describing the magnetic properties of rare-earth–transition-metal intermetallic compounds
[5]. This model was extended so as to be suitable for interpreting the phenomena in magnetic
superlattice systems [6]. The spin-wave spectra of three- and four-sublattice systems and the
corresponding superlattices with elementary units of three or four different layers were studied
analytically, by developing a complicated diagonalization procedure in terms of creation and
annihilation operators [5, 6]. Recently, Pavkov et al found that the Bogoliubov and Tyablikov
transformation could be used to diagonalize the Hamiltonian of a three- or four-sublattice
system analytically in a simpler manner [7]. The elementary excitations and low-temperature
behaviour of Heisenberg magnets with three or four sublattices were discussed.

On the other hand, various methods based on Green’s function calculations, known
as surface Green’s function matching [8] and interface response theory [9], have been
developed for layered structures. Theoretical Green’s function studies of the bulk and surface
magnons of a semi-infinite stack of two different ferromagnetic films [10] and two-sublattice
ferrimagnets [11, 12] were performed. Hinchey and Mills studied the basic magnetic response
characteristics of superlattice structures formed from alternating layers of ferromagnetic
and antiferromagnetic materials [13]. The spin-wave spectrum of a system of localized
spins interacting by periodically modulated exchange interactions was determined by solving
numerically the equations of motion for the magnon Green function [14]. Chen et al used the
tridiagonal matrix method and the random-phase approximation to obtain a closed form of the
Green’s functions for two different semi-infinite ferromagnets coupled across an interface [15].
Wei et al studied the spin waves of layered Heisenberg ferrimagnets [16] and the disordered
ground-state properties of a double-layer Heisenberg antiferromagnet [17]. Wei et al also
applied the Green’s function technique after applying the linear spin-wave approximation
to calculate the spin-wave spectra of layered Heisenberg ferrimagnets [16, 18]. Azaria and
Diep investigated theoretically magnetic properties, such as spin-wave excitations and phase
transitions, of antiferromagnetic superlattices at finite temperatures, using a multi-sublattice
Green’s function technique [19–21]. Mathon [22] developed a general recursion method for
calculating the exact local spin-wave Green’s function for arbitrary ferromagnetic interfaces,
superlattices and disordered layers.

However, to our knowledge, none of the previous studies have dealt with multi-sublattice
systems with both different exchange constants and different spins for different sublattices. It
is also difficult to study such systems by using the analytical procedure developed previously
[5–7], because of the complexity of the problem. Furthermore, the temperature dependences
of the magnetization, internal energy and specific heat for the multi-sublattice or superlattice
systems constitute one of the most interesting topics in this field.

In the present work, we shall investigate the temperature dependences of the magnetization,
internal energy and specific heat of three-sublattice systems, by employing retarded Green’s
functions, within the framework of the linear spin-wave approximation. Emphasis will be put
on the effect of the sublattice spins and the exchange constants on these physical properties at
low temperatures. This work could be extended easily to the more complicated multi-sublattice
systems and the corresponding superlattices. The paper is arranged as follows. The model
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and Hamiltonian are described in section 2. The calculation results and discussion are given
in section 3. Section 4 gives a summary. The retarded Green’s function matrix elements are
given in the appendix.

2. Model and Hamiltonian

The model of a three-sublattice Heisenberg ferrimagnet or ferromagnet with different exchange
constants is established following references [5, 6]. A schematic diagram of the three-sublattice
model is given as figure 1, where only the spins located on the three crystallographic axes are
illustrated. The lattice of sites is a simple cubic one and the three interpenetrating a-, b- and
c-sublattices are distributed among these sites. As shown in figure 1, each a-site is surrounded
by three b- and c-sites along each direction. The neighbours always belong to different lattices.
The a-, b- and c-spins separately form sublattices with the triclinic unit cell.

Figure 1. A schematic diagram of the three-
sublattice model. Only the spins located on the three
crystallographic axes are illustrated.

We take i ∈ a-sublattice, j ∈ b-sublattice and m ∈ c-sublattice, and the spins are �Sa , �Sb
and �Sc, respectively. There are N sites on each sublattice: a total of 3N sites for the system.
The Hamiltonian is

H = −
∑
〈l,i〉

Jl,i;l,i+δ �Sl,i · �Sl,i+δ

= −
∑
i,δ

Jab �Sa,i · �Sb,i+δ −
∑
j,δ

Jbc �Sb,j · �Sc,j+δ

−
∑
m,δ

Jca �Sc,m · �Sa,m+δ (l = a, b, c) (2.1)

where δ represents the fact that only the exchanges between nearest neighbours are taken into
account. Jab, Jbc and Jca are the exchange constants for neighbouring sites.

In the case of a ferrimagnet, the direction of the spins of the initial states at a- and c-sites
is along the positive z-axis, but that of spins at b-sites is along the negative z-axis. Therefore,
the exchange constants Jab, Jbc are negative, but Jca is positive. To simplify, we assume
|Jab| = |Jbc| �= Jca , |Jab| = |Jbc| = J and Jca = J ′.

In the initial state of a ferromagnet, the directions of spins at the a-, b- and c-sites are all
positive (along the z-axis), the values of Jab, Jbc and Jca also positive, and Jab = Jbc �= Jca;
we take Jab = Jbc = J , Jca = J ′.

By use of the Holstein–Primakoff transform [23] and the linear spin-wave approximation
[24, 25], introducing the spin-wave operators ak (a+

k ), bk (b+
k ) and ck (c+

k ), we can rewrite



4168 Rong-ke Qiu and Zhi-dong Zhang

equation (2.1) as follows:

H = −NZ(SaSbJ + SbScJ + ScSaJ
′) + Z(SbJ + ScJ

′)
∑
k

a+
k ak

+ Z(Sa + Sc)J
∑
k

b+
k bk + Z(SbJ + SaJ

′)
∑
k

c+
k ck

+
√
SaSbJZ

∑
k

(γ−kakbk + γka
+
k b

+
k ) +

√
SbSCJZ

∑
k

(γ−kb
+
k c

+
k + γkbkck)

−
√
ScSaJ

′Z
∑
k

(γ−kcka
+
k + γkc

+
k ak) (2.2a)

and

H = −NZ(SaSbJ + SbScJ + ScSaJ
′) + Z(SbJ + ScJ

′)
∑
k

a+
k ak

+ Z(Sa + Sc)J
∑
k

b+
k bk + Z(SbJ + SaJ

′)
∑
k

c+
k ck

−
√
SaSbJZ

∑
k

(γ−kakb
+
k + γka

+
k bk) −

√
SbSCJZ

∑
k

(γ−kbkc
+
k + γkb

+
k ck)

−
√
ScSaJ

′Z
∑
k

(γ−kcka
+
k + γkc

+
k ak) (2.2b)

for the ferrimagnet and the ferromagnet, respectively.
Here Z = 3 represents the number of same-type nearest neighbours:

γ±k = 1

Z

∑
δ

e±ikδ (2.3)

and γk �= γ−k , because the model has no inversion symmetry with respect to each site. γk and
γ−k are complex; the real coefficients in reference [6] were due to erroneous site summation.
In fact, the Hamiltonians in references [5, 6] are valid explicitly only in the trivial limit of
k = 0 (in this case, γk = γ−k), and may be applicable at the limit of the long-wavelength
approximation. It is hard to reach an analytical solution for the Hamiltonian (2.2a) or (2.2b).
In the following, we try to employ the technique of retarded Green’s functions to study the
spin waves and the physical properties at zero and low temperatures. It is expected that the
method used in this paper would be easily extended to other more complex multi-sublattice
systems.

3. Calculation and discussion

We first define the third-order-matrix retarded Green’s function:

G(k, ω) =

 〈〈ak, a+

k 〉〉ω 〈〈ak, bk〉〉ω 〈〈ak, c+
k 〉〉ω

〈〈b+
k , a

+
k 〉〉ω 〈〈b+

k , bk〉〉ω 〈〈b+
k , c

+
k 〉〉ω

〈〈ck, a+
k 〉〉ω 〈〈ck, bk〉〉ω 〈〈ck, c+

k 〉〉ω


 (3.1a)

and

G(k, ω) =

 〈〈ak, a+

k 〉〉ω 〈〈ak, b+
k 〉〉ω 〈〈ak, c+

k 〉〉ω
〈〈bk, a+

k 〉〉ω 〈〈bk, b+
k 〉〉ω 〈〈bk, c+

k 〉〉ω
〈〈ck, a+

k 〉〉ω 〈〈ck, b+
k 〉〉ω 〈〈ck, c+

k 〉〉ω


 (3.1b)

for the ferrimagnet and the ferromagnet, respectively. By using the equation for the Green’s
function, we obtain the solution for the Green’s function as follows:

G(k, ω) = 1

D(ω)

(
M11 M21 M31

M12 M22 M32

M13 M23 M33

)( 1 0 0
0 ∓1 0
0 0 1

)
. (3.2)
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The upper/lower sign above corresponds to the case of a ferrimagnet/ferromagnet. The retarded
Green’s function matrix elements in equations (3.2) are given in the appendix. In equation (3.2),

D(ω) =
∣∣∣∣∣
ω − H11 ±H12 H13

H21 ω ∓ H22 H23

H31 ±H32 ω − H33

∣∣∣∣∣ . (3.3)

Here ω represents the spectrum of systems. The upper/lower sign in equation (3.3) is for the
ferrimagnet/ferromagnet, respectively. The parameters Hij (i, j = 1, 2, 3) are given in the
appendix also.

3.1. Spin-wave spectrum

For vanishing of the determinant, i.e., D(ω) = 0, we obtain the spectrum expressions as
follows:

ω1 = 2

√
−p

3
cos

ψ

3

ω2 = −
√

−p

3
cos

ψ

3
−

√
3

√
−p

3
sin

ψ

3

ω3 = −
√

−p

3
cos

ψ

3
+

√
3

√
−p

3
sin

ψ

3

(3.4)

where

p = −b2
1

3
+ b2

ψ = arctan

√−s

−q/2

q = 2

27
b3

1 − 1

3
b1b2 + b3

s =
(
q

2

)2

+

(
p

3

)3

(3.5)

with

b1 = −(H11 ± H22 + H33)

b2 = ±H11H22 + H11H33 ± H22H33 − H13H31 ∓ H32H23 ∓ H12H21

b3 = ±H11H23H32 ± H22H13H31 ± H33H12H21 ± H21H32H13 ± H12H23H31 ∓ H11H22H33.

(3.6)

The upper/lower sign in equation (3.6) is for the ferrimagnet/ferromagnet, respectively.
s < 0 is required because ωl (l = 1, 2, 3) are real numbers. The spin-wave spectra

calculated numerically are shown in figures 2 and 3 for the ferrimagnet and the ferromagnet,
respectively. From the two figures, the spin-wave spectra for the ferrimagnet and ferromagnet
each have three branches, one for each sublattice. For the ferrimagnet, there is one branch
with negative energy ω2. As explained in references [11, 12], one may consider the magnon
vacuum as the ground state. As elementary excitations, the magnons excited out of the filled sea
constitute the branches with the positive/negative energy [11, 12]. The negative eigenfrequency
for the ferrimagnet might be related also to whether the spin-wave propagates clockwise or
anticlockwise relative to the spins Sa , Sb and Sc. ω3 represents the acoustic branch since
kx → 0, ω3 → 0, while ω2 and ω1 represent the optical branches. There are three positive
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Figure 2. The spin-wave spectrum, ω versus kx , with
ky = kz = 0, Sa = Sb = Sc = 0.5 and J ′/J = 0.5, for
three-sublattice ferrimagnets.

Figure 3. The spin-wave spectrum, ω versus kx , with
ky = kz = 0, Sa = Sb = Sc = 0.5 and J ′/J = 0.5, for
three-sublattice ferromagnets.

energies ωl (l = 1, 2, 3) for spin-wave spectra of the ferromagnet, among which ω3 is that
for the acoustic branch and ω1, ω2 are those for the optical branches. When Sa = Sb = Sc
and J = J ′, the spin-wave spectrum of the three-sublattice Heisenberg ferrimagnet does not
reduce to that of the Heisenberg antiferromagnet.

3.2. Magnetization

After employing the spectral theorem, we finally derive the magnetization per site for each
sublattice (the unit is taken to be gµB) from

Ma = Sa − 1

N

∑
k

3∑
l=1

M11(ωl)

(eβωl − 1)
∏

m �=l (ωl − ωm)
(3.7)

Mb = −Sb − 1 +
1

N

∑
k

3∑
l=1

−M22(ωl)

(eβωl − 1)
∏

m �=l (ωl − ωm)
(3.8a)

Mb = Sb − 1

N

∑
k

3∑
l=1

M22(ωl)

(eβωl − 1)
∏

m �=l (ωl − ωm)
(3.8b)

Mc = Sc − 1

N

∑
k

3∑
l=1

M33(ωl)

(eβωl − 1)
∏

m �=l (ωl − ωm)
(3.9)

for the ferrimagnet and the ferromagnet, respectively; here β = 1/kBT .
From equations (3.7)–(3.9), one can obtain the magnetization at zero temperature (T =

0 K) of the ferrimagnet as follows:

Ma0 = Sa +
1

N

∑
k

M11(ω2)

(ω2 − ω1)(ω2 − ω3)
(3.10)

Mb0 = −Sb − 1 +
1

N

∑
k

M22(ω2)

(ω2 − ω1)(ω2 − ω3)
(3.11)
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Mc0 = Sc +
1

N

∑
k

M33(ω2)

(ω2 − ω1)(ω2 − ω3)
(3.12)

whereMa0,Mb0 andMc0 are the zero-temperature magnetizations of the a-, b- and c-sublattices
of the ferrimagnet, respectively.

By solving numerically equations (3.7)–(3.9) and (3.10)–(3.12) for different parameters
J ′/J , temperature (θ = kBT ) dependences of the sublattice magnetization of the ferrimagnet
are derived; these are shown in figure 4. The sublattice magnetizations at zero temperature
are smaller than their classical values, owing to the zero-point quantum fluctuations of the
spins (see equations (3.15a) and (3.16) below). For fixed values of Sa , Sb and Sc, the zero-
point quantum fluctuations decrease and consequently the sublattice magnetizations at zero
temperature increase with increasing J ′/J . Figure 5 shows the dependence on J ′/J of
the sublattice magnetization at zero temperature for the ferrimagnet. It is evident that the
sublattice magnetization increases with increase of J ′/J , corresponding to the enhancement
of the ferromagnetism. The values of the zero-point quantum fluctuations for the a- and c-
sublattices are the same only if Sa = Sc. Even if Sa = Sb (or Sc = Sb), the zero-point quantum
fluctuation of the a-sublattice (or c-sublattice) differs from that of the b-sublattice. In any
case, if Sa = Sb (or Sc = Sb), the zero-point quantum fluctuation of the b-sublattice is always
stronger than that of the a-sublattice (or c-sublattice) and, correspondingly, the magnetization
at 0 K of the former is always weaker than that of the latter. For fixed values of J ′/J and Sa ,
Sb, Sc, all of the sublattice magnetizations decrease with increasing temperature θ (figure 4).

Figures 6 and 7 represent the dependence of the magnetization at zero temperature for each
sublattice on the spins Sb and Sa , respectively. It is seen from figure 6 that the magnetizations
Ma0 and Mc0 first decrease with increasing spin Sb, reach a minimum at Sb = Sa +Sc and then
increase. This is attributed to the fact that the stronger the antiferromagnetism, the stronger
the zero-point quantum fluctuation and thus the smaller the magnetization. The spins Sa
and Sc, which are ferromagnetically coupled, may be treated as being coupled as a whole
antiferromagnetically with the spin Sb. When the sum of the spins Sa and Sc is equal to the
spin Sb, the effect of the b-sublattice on the a- and c-sublattices due to the antiferromagnetic
coupling is strongest. It is also shown in figure 6 that in case of Sa = Sc, the magnetizations
Ma0 and Mc0 are always the same. This means that the a- and c-sublattices are symmetric
in the system and have the same behaviours, owing to the condition of Jab = Jbc. From
figure 7, the magnetization Mc0 monotonically increases with increasing Sa , because the spins
Sa and Sc couple with each other ferromagnetically. The correlation between the a- and c-
sublattices behaves ferromagnetically. The magnetization Mb0 varies with the change of the
spin Sa , depending on the difference between Sb and the sum of Sa and Sc. The magnetization
Mb0 exhibits its minimum when the condition Sb = Sa + Sc is satisfied. For Sb = 1.5 and
Sc = 0.5, the minimum is at Sa = 1.0. For Sb = 1.0 and Sc = 1.0, the minimum should be
at Sa = 0 and thus the magnetization Mb0 increases monotonically with increasing Sa . Even
if Sc = Sb, as shown in figure 7, the magnetization Mb0 differs from the magnetization Mc0.
These behaviours are attributed to the fact that the three-sublattice system is asymmetric. This
is different to the situation in two-sublattice ferrimagnets [16]. This indicates that the symmetry
of the multi-sublattice systems strongly affects the magnetic properties of the system.

From equations (3.7)–(3.9), the sublattice magnetizations at zero temperature of ferro-
magnets are same as the classical values, indicating that there is no zero-point quantum
fluctuation in the three-sublattice ferromagnet. The sublattice magnetization decreases
monotonically with increasing temperature as expected. The change of the exchange constants
and/or of the spin strength weakly affects the low-temperature behaviours of the magnetization.
This is ascribed to the fact that all of the spins in the system have ferromagnetic exchange
couplings and there is no competition among these exchange couplings.
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Figure 4. Temperature dependences of the sublattice magnetization M of the three-sublattice
ferrimagnets with Sa = Sb = 0.5 and Sc = 1.0. The dashed, dotted and solid curves represent the
values of J ′/J = 0.1, 1.0 and 4.0, respectively. The labels a, b and c denote the magnetization of
the a-sublattice, b-sublattice and c-sublattice, respectively.

Figure 5. The dependences on J ′/J of the magnetization M0 (solid curves) at zero temperature
and the energy C (dashed curve) of the zero-point quantum fluctuation for the three-sublattice
ferrimagnets with Sa = Sb = 0.5 and Sc = 1.0. The curves a, b and c correspond to the
a-sublattice, b-sublattice and c-sublattice, respectively.
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3.3. Internal energy

From equations (2.2a), (2.2b), (3.1a), (3.1b), (3.2) and applying the spectral theorem, the
internal energies per site are described as follows:

U = 1

3N
〈H 〉 = −[(Sa + Sc)(Sb + 1)J + SaScJ

′] +
1

N

∑
k

3∑
l=1

A

(eβωl − 1)
∏

m �=l (ωl − ωm)

(3.13a)

and

U = 1

3N
〈H 〉 = −[(Sa + Sc)SbJ + SaScJ

′] +
1

N

∑
k

3∑
l=1

A

(eβωl − 1)
∏

m �=l (ωl − ωm)

(3.13b)

for the ferrimagnet and the ferromagnet, respectively. Here

A = (SbJ + ScJ
′)M11(ωl) ∓ (Sa + Sc)JM22(ωl) + (SbJ + SaJ

′)M33(ωl)

±
√
SaSbJ (γkM12(ωl) ∓ γ−kM21(ωl)) ±

√
SbScJ (γ−kM32(ωl) ∓ γkM23(ωl))

Figure 6. Dependences of the magnetizations Ma0 and Mc0 at zero temperature on the spin Sb
for the three-sublattice ferrimagnets. The curves with the solid squares and the upward-pointing
triangles correspond to Sa = 0.5, Sc = 1.0 and J ′/J = 1.0. The curve with the circles is for
Sa = 1.0, Sc = 1.0 and J ′/J = 1.0.



4174 Rong-ke Qiu and Zhi-dong Zhang

Figure 7. Dependences of magnetizations Mb0 and Mc0 at zero temperature on the spin Sa for the
three-sublattice ferrimagnets. The curves with the solid squares and the upward-pointing triangles
correspond to Sb = 1.5, Sc = 0.5 and J ′/J = 1.0. The curves with the circles and the crosses are
for Sb = 1.0, Sc = 1.0 and J ′/J = 1.0.

−
√
ScSaJ

′(γ−kM13(ωl) + γkM31(ωl)) (3.14)

where the upper/lower sign above corresponds to the case of the ferrimagnet/ferromagnet. At
T = 0 K, the ground-state energy per site of the ferrimagnet is obtained from equations (3.13a)
and (3.14) as

U0 = −[(Sa + Sc)SbJ + SaScJ
′] + C (3.15a)

C = −(Sa + Sc)J − 1

N

∑
k

A(ω2)

(ω2 − ω1)(ω2 − ω3)
. (3.16)

Here C is the energy for zero-point quantum fluctuation of the ferrimagnet.
For the ferromagnet, from equations (3.13b) and (3.14), one has

U0 = −[(Sa + Sc)SbJ + SaScJ
′]. (3.15b)

From equations (3.15) and (3.16), it is seen that the ferrimagnet with three sublattices
has the energy of the zero-point quantum fluctuations, but the ferromagnet does not. From
equation (3.15), increase of the spins Sa , Sb and Sc decreases the internal energy U0 at zero
temperature. The energy C for zero-point quantum fluctuations is illustrated as a function of
J ′/J (dashed line in figure 5). The absolute value of the energy C decreases with increasing
J ′/J , indicating that the effect of zero-point quantum fluctuations is weakened. This means
that increasing J ′/J decreases the antiferromagnetism of the system. This is consistent with
the results in figure 5 for the magnetization at zero temperature.
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In order to obtain a clearer understanding of the zero-point quantum fluctuations in the
three-sublattice ferrimagnet, we calculate the spin deviation 	m per spin of the system as
follows:

	m = 	Ma

Sa
+
	Mb

Sb
+
	Mc

Sc
(3.17)

where 	Mi (i = a, b, c) is the averaged magnetization deviation at zero temperature for each
sublattice; 	m represents the amplitude of the averaged deviation angle of the spins in the
system. Figure 8 represents the dependence of the spin deviation 	m on the spin Sa (Sb). The
	m ∼ Sb curve exhibits a maximum, indicating that at that point, the deviation angle of the
spin is largest and the antiferromagnetism of the whole system is strongest. The value of 	m

decreases monotonically with increasing Sa , no matter whether Sb < Sc or Sb > Sc. The larger
the spin Sa , the weaker the antiferromagnetism of the system. For comparison, the dependence
on the spin Sa (Sb) of the energyC for the zero-point quantum fluctuations is shown in figure 9.
The energy C decreases monotonically with the increase of Sb. When Sb < Sc, the energy C

hardly changes with change of the value of Sa , but still exhibits a maximum. When Sb > Sc,
the energy C decreases monotonically with increasing Sa . The energy C for the zero-point
quantum fluctuations depends not only on the averaged deviation angle of the spin, but also
on the values of all of the spins Sa, Sb and Sc.

We numerically derive the temperature dependence of the internal energy from
equations (3.13a), (3.13b) and (3.14). The results are illustrated in figure 10 as dashed and solid
lines, respectively, for the ferrimagnet and the ferromagnet. For the same value of J ′/J , the
internal energy of the ferrimagnet is smaller than that of the ferromagnet at fixed temperature.
For both the ferrimagnet and the ferromagnet, the internal energy U increases with increasing
temperature θ for fixed values of J ′/J , Sa , Sb and Sc. It decreases with increasing J ′/J
for fixed values of Sa , Sb, Sc and θ . From the discussion above, larger J ′/J corresponds to
stronger ferromagnetism. Why does the internal energy U of the ferrimagnet not increase with
increasing J ′/J ? We try to explain this as follows. The absolute value of the initial energy
is much larger than that of the energy C for the zero-point quantum fluctuations. Therefore,
the modification to the internal energy U , owing to the energy C for the zero-point quantum
fluctuations, is negligible, compared with that of the initial energy. Although the absolute value
of the energy C for the zero-point quantum fluctuations decreases with increasing J ′/J , the
internal energy U increases with increasing J ′/J because, from equation (3.15a), the absolute
value of the initial energy is enhanced by increasing J ′/J .

3.4. Specific heat

The specific heat at low temperatures for the ferrimagnet and the ferromagnet is derived as

Cv = ∂U

∂θ
= 1

N

∑
k

3∑
l=1

Aωl

(e
1
2 βωl − e− 1

2 βωl )2θ2
∏

m �=l (ωl − ωm)
. (3.18)

The parameter A was defined by equation (3.14). From equations (3.18), the temperature
dependence of the specific heat was calculated numerically for various values of J ′/J and
spin. The results for J ′/J = 0.1, 1.0, 2.0 are plotted in figures 11 and 12 for the ferrimagnet
and the ferromagnet, respectively. For both the ferrimagnet and the ferromagnet, it is shown
that the specific heat increases with increasing temperature θ for fixed values of J ′/J and Si
(i = a, b, c). The specific heat for both the ferrimagnet and the ferromagnet decreases with
increasing J ′/J and/or the spin Si (i = a, b, c).
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Figure 8. 	m versus Sa (Sb) for the three-sublattice ferrimagnets with J ′/J = 1.0. The curve
with the upward-pointing triangles represents 	m ∼ Sb with Sa = 0.5 and Sc = 2.0. The curve
with the circles is for 	m ∼ Sa with Sb = 0.5 and Sc = 2.0, while the one with the squares
corresponds to 	m ∼ Sa with Sb = 2.0 and Sc = 1.0.

Figure 9. The dependence of the energyC of zero-point quantum fluctuation on the spin Sa (Sb) for
the three-sublattice ferrimagnets with J ′/J = 1.0. The curve with the upward-pointing triangles
represents the condition with Sa = 0.5 and Sc = 2.0. The curve with the circles is for the case of
Sb = 0.5 and Sc = 2.0, while the one with the squares corresponds to the case of Sb = 2.0 and
Sc = 1.0.
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Figure 10. Temperature dependences of the internal energy U for the three-sublattice systems
with Sa = 1.0 and Sb = Sc = 0.5. The curves a, b and c correspond to J ′/J = 0.1, 1.0 and 2.0,
respectively. The dashed curves are for ferrimagnets, while the solid curves are for ferromagnets.

4. Summary

In this paper, the linear spin-wave method has been applied to a three-sublattice Heisenberg
ferrimagnetic or ferromagnetic system with different exchange constants (|Jab| = |Jbc| �= Jca).
By using the retarded Green’s function technique, we have investigated the spin-wave spectrum,
the sublattice magnetization, the internal energy and the specific heat for the ferrimagnet and
the ferromagnet.

For the three-sublattice systems, there are some behaviours that are the same as those
of the two-sublattice systems. For instance, there is zero-point quantum fluctuation at zero
temperature in the ferrimagnet, but not in the ferromagnet. The sublattice magnetization
decreases with increasing temperature θ for fixed values of Sa , Sb, Sc and J ′/J for both the
ferromagnet and the ferrimagnet. The internal energy and the specific heat increase with
temperature, but decrease with increasing the values of the spins.

However, the three-sublattice ferrimagnet has some particular characteristics which
are not shown by the two-sublattice systems. For example, the sublattices with different
original alignments have different zero-point quantum fluctuations, even when the spins of the
sublattices are same. The effects of the spins Sa (Sc) and Sb on the magnetizations of other
sublattices differ. Since the a- and c-sublattices couple ferromagnetically, the larger the value
of the spin Sa (Sc), the larger the interaction between these two sublattices. The characteristics
of the a-sublattice are the same as those of the c-sublattice, due to their similarity as well
as the symmetry of the system. On the other hand, the behaviours of the b-sublattice are
different from those of the a- and c-sublattices, which is mainly attributed to the asymmetry
of the three-sublattice system. Because the b-sublattice couples with the a- and c-sublattices
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Figure 11. Temperature dependences of the specific heat Cv for the three-sublattice ferrimagnets.
The curves a, b and c correspond to J ′/J = 0.1, 1.0 and 2.0, respectively. The dashed curves
correspond to Sa = Sb = Sc = 0.5, while the solid curves are for Sa = Sb = Sc = 1.0.

Figure 12. Temperature dependences of the specific heat Cv for the three-sublattice ferromagnets.
The curves a, b and c correspond to J ′/J = 0.1, 1.0 and 2.0, respectively. The dashed curves
correspond to Sa = Sb = Sc = 0.5, while the solid curves are for Sa = Sb = Sc = 1.0.



Magnetization, internal energy and specific heat in a ferrimagnet or ferromagnet 4179

antiferromagnetically, the effect of the b-sublattice on the a- and c-sublattices is strongest when
Sb = Sa +Sc and, at the same time, the strongest effect of the a-sublattice (c-sublattice) on the
b-sublattice is found. Furthermore, the spin-value dependences of the spin deviation 	m per
spin (and also the energy for the zero-point quantum fluctuation) of the system are different for
different sublattices. These differences are ascribed to the asymmetry of the three-sublattice
systems, which leads to the new intrinsic properties of the systems.

For a ferrimagnet, the antiferromagnetism of the system becomes weaker with increasing
J ′/J , and the coefficient J ′/J represents the competition between ferromagnetism and anti-
ferromagnetism of the system for the three-sublattice ferrimagnet. The sublattice magnet-
ization at low temperatures (and also the magnetization M0 at 0 K) increases with increasing
J ′/J for fixed Sa , Sb and Sc. That is, the magnetization deviation as well as the absolute value
of the energy for the spin zero-point quantum fluctuation decrease with increasing J ′/J for
fixed Sa , Sb and Sc. For both the ferromagnet and the ferrimagnet, the internal energy and
the specific heat decrease with increasing J ′/J . For the ferromagnet, the coefficient J ′/J
represents only the ratio of the exchange coupling between the a-sublattices and c-sublattices,
with respect to that between the b-sublattices and a-sublattices (c-sublattices), which can also
evidently affect the properties of the systems. The sublattice magnetization at low temperatures
of the ferromagnet increases with increasing J ′/J for fixed values of θ , Sa , Sb and Sc, but
the magnetization M0 at 0 K is just equal to the value of the spin for each sublattice. Our
results show that the coefficient J ′/J plays an important role in the magnetic properties of the
ferrimagnet and the ferromagnet.

The conclusions obtained in this work can be extended immediately to the corresponding
superlattice system with the elementary unit of three different layers. This is because the
superlattice is periodic not only in the y- and z-directions, but also in the x-direction with
a larger periodicity [6]. Thus the spin-wave theory of the superlattice can be simplified so
that it can be dealt with using a one-dimensional model, by taking advantage of the periodic
boundary condition on the basal y–z plane and by performing the two-dimensional in-plane
Fourier transformation [6, 13, 26]. The method in this work can be applied also to other
multi-sublattice systems and superlattice Heisenberg systems.
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Appendix

The retarded Green’s function matrix elements in equations (3.2) are as follows:

M11 = (ω ∓ H22)(ω − H33) ∓ H23H32

M22 = (ω − H11)(ω − H33) − H13H31

M33 = (ω − H11)(ω ∓ H22) ∓ H12H21

M12 = −H21(ω − H33) + H31H23

M13 = −H31(ω ∓ H22) ± H32H21

M21 = ∓H12(ω − H33) ± H32H13

M23 = ∓H32(ω − H11) ± H12H31
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M31 = −H13(ω ∓ H22) ± H12H23

M32 = −H23(ω − H11) + H13H21.

The upper/lower sign above corresponds to the case of the ferrimagnet/ferromagnet. The
parameters Hij are

H11 = Z(SbJ + ScJ
′)

H12 = −
√
SaSbZJγk

H13 =
√
SaScZJ

′γ−k

H21 =
√
SaSbZJγ−k

H22 = −Z(Sc + Sa)J

H23 =
√
SbScZJγk

H31 =
√
ScSaZJ

′γk

H32 = −
√
SbScZJγ−k

H33 = Z(SbJ + SaJ
′).
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